A Data-Driven Approach to Question Subjectivity Identification in Community Question Answering

نویسندگان

  • Tom Chao Zhou
  • Xiance Si
  • Edward Y. Chang
  • Irwin King
  • Michael R. Lyu
چکیده

Automatic Subjective Question Answering (ASQA), which aims at answering users’ subjective questions using summaries of multiple opinions, becomes increasingly important. One challenge of ASQA is that expected answers for subjective questions may not readily exist in theWeb. The rising and popularity of Community Question Answering (CQA) sites, which provide platforms for people to post and answer questions, provides an alternative to ASQA. One important task of ASQA is question subjectivity identification, which identifies whether a user is asking a subjective question. Unfortunately, there has been little labeled training data available for this task. In this paper, we propose an approach to collect training data automatically by utilizing social signals in CQA sites without involving any manual labeling. Experimental results show that our data-driven approach achieves 9.37% relative improvement over the supervised approach using manually labeled data, and achieves 5.15% relative gain over a stateof-the-art semi-supervised approach. In addition, we propose several heuristic features for question subjectivity identification. By adding these features, we achieve 11.23% relative improvement over word n-gram feature under the same experimental setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Embedded Question Reuse in Question Answering

The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...

متن کامل

ارایه یک پیکره‌ پرسش و پاسخ مذهبی در زبان فارسی

Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...

متن کامل

CoCQA: Co-Training over Questions and Answers with an Application to Predicting Question Subjectivity Orientation

An increasingly popular method for finding information online is via the Community Question Answering (CQA) portals such as Yahoo! Answers, Naver, and Baidu Knows. Searching the CQA archives, and ranking, filtering, and evaluating the submitted answers requires intelligent processing of the questions and answers posed by the users. One important task is automatically detecting the question’s su...

متن کامل

Optimizing question answering systems by Accelerated Particle Swarm Optimization (APSO)

One of the most important research areas in natural language processing is Question Answering Systems (QASs). Existing search engines, with Google at the top, have many remarkable capabilities. But there is a basic limitation (search engines do not have deduction capability), a capability which a QAS is expected to have. In this perspective, a search engine may be viewed as a semi-mechanized QA...

متن کامل

Boosting Passage Retrieval through Reuse in Question Answering

Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012